1,236 research outputs found

    Saltmarsh resilience to periodic shifts in tidal channels

    Get PDF
    Resilience of coastal ecosystems to climate change is largely determined by the interaction between plants and the surrounding tidal environment. Research has tended to focus on processes operating at the local scale to explain resilience mechanisms, overlooking potentially important landscape-scale processes and patterns. We show from aerial images spanning 67 years across 3 estuaries that saltmarsh loss was compensated by expansion elsewhere in the estuary when tidal channels shifted position. Compensatory expansion rates were as high as 6 m/yr. This phenomenon of “geomorphic compensation” represents a hitherto overlooked large-scale self-organizing pattern that facilitates the long-term persistence of marshes in estuaries. The geomorphic compensation pattern likely also occurs in other hydrological systems including mangrove forests, and seagrass meadows, and river islands. Compensatory erosion-expansion patterns occurred at the same time as net marsh extent increased by between 120 and 235% across all three estuaries. Marsh expansion mostly occurred in the lower parts of each estuary, where channel migration and compensatory expansion was less evident. Patterns of geomorphic compensation therefore appear to operate at discrete spatio-temporal scales, nested within a hierarchy of coastal morphodynamic processes that govern longer-term patterns of either net marsh gain or loss. Coastal ecosystem resilience can therefore only be fully appreciated when examining erosion and expansion patterns at both local and landscape scales. The intrinsic dynamics of marshes described here have important implications for the long-term delivery of ecosystem services

    Comments on Charges and Near-Horizon Data of Black Rings

    Full text link
    We study how the charges of the black rings measured at the asymptotic infinity are encoded in the near-horizon metric and gauge potentials, independent of the detailed structure of the connecting region. Our analysis clarifies how different sets of four-dimensional charges can be assigned to a single five-dimensional object under the Kaluza-Klein reduction. Possible choices are related by the Witten effect on dyons and by the large gauge transformation in four and five dimensions, respectively.Comment: 30 pages, 1 figure; v2: additional references; v3: published versio

    Brane Universes with Gauss-Bonnet-Induced-Gravity

    Full text link
    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a ``dark energy'' field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density ``Big-Bang'' and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.Comment: 12 pages, 19 figures. Minor modifications to text, comments on phantom behaviour added. References added. As submitted to JCA

    Entropy Function for Non-extremal D1D5 and D2D6NS5-branes

    Full text link
    We apply the entropy function formalism to non-extremal D1D5 and D2D6NS5-branes whose throat approximation is given by the Schwarzschild black hole in AdS_3\times S^3\times T^4 and AdS_3\times S^2\times S^1\times T^4, respectively. We find the Bekenstein-Hawking entropy and the (alpha')^3R^4 corrections from the value of the entropy function at its saddle point. While the higher derivative terms have no effect on the temperature, they decrease the value of the entropy.Comment: 17 Pages, Latex file; Minor additions, version published in JHE

    Entropy Functions with 5D Chern-Simons terms

    Full text link
    In this note we reconsider Sen's entropy function analysis for 5D supergravity actions containing Chern-Simons terms. The apparent lack of gauge invariance is usually tackled via a 4D reduction. Here we motivate how a systematic 5D procedure also works. In doing so, it becomes important to identify the correct 5D charges. In particular, we perform explicit calculations for the black ring and 5D black hole. In the black ring analysis, we find Chern-Simons induced spectral flow shifts emerging out of Sen's formalism. We find that the entropy function nevertheless remains gauge invariant and the resulting electric charges are identified as Page charges. For the black hole too, 5D gauge invariance is confirmed. Our 5D analysis enables us to fix a mismatch that arose in the electric charges of Goldstein and Jena's 4D-reduced calculation. Finally we provide an interpretation for the e^0 - p^0 exchange in the entropy function as an interpolation between black hole and black ring geometries in Taub-NUT.Comment: 27 page

    Non-supersymmetric Attractors in Born-Infeld Black Holes with a Cosmological Constant

    Full text link
    We investigate the attractor mechanism for spherically symmetric extremal black holes in Einstein-Born-Infeld-dilaton theory of gravity in four-dimensions, in the presence of a cosmological constant. We look for solutions analytic near the horizon by using perturbation method. It is shown that the values of the scalar fields at the horizon are only dependent on the charges carried by the black hole and are irrelevant in their asymptotic values. This analysis supports the validity of non-supersymmetric attractors in the presence of higher derivative interactions in the gauge fields part and in non-asymptotically flat spacetime.Comment: 18 pages, no figu

    On Entropy Function for Supersymmetric Black Rings

    Full text link
    The entropy function for five-dimensional supersymmetric black rings, which are solutions of U(1)3U(1)^{3} minimal supergravity, is calculated via both on-shell and off-shell formalism. We find that at the tree level, the entropy function obtained from both perspectives can reproduce the Bekenstein-Hawking entropy. We also compute the higher order corrections to the entropy arising form five-dimensional Gauss-Bonnet term as well as supersymmetric R2R^{2} completion respectively and compare the results with previous microscopic calculations.Comment: 17 pages, no figure, JHEP3 style, to appear in JHEP
    • …
    corecore